How to use

3.Install the extension.

4.(OPTIONAL) Press F1 and type ESP-IDF: Select where to Save Configuration
Settings, which can be User Settings (global), Workspace Settings or Workspace Folder
Settings. Default is User settings.

NOTE: Please take a look at Working with multiple projects for more
information.

5.In Visual Studio Code, select menu "View" and "Command Palette" and
type configure esp-idf extension. After, choose the ESP-IDF: Configure ESP-

IDF Extension option. You can also choose where to save settings in the setup wizard.

& ESP-IDF Setup x

4

ESPRESSIF

ESP-IDF Extension for Visual Studio Code

Select download server:
Github

Select ESP-IDF version:

| vé.3 (releas sion)

Enter ESP-IDF container directory

‘. [Usersfbrianfesp

Enter ESP-IDF Tools directory (IDF_TOOLS_PATH)
‘. [Users/brian/.e

Select Python version:
‘ fu python3

Install

8.Choose Express and select the download server:
*Espressif: Faster speed in China using Espressif Download servers links.
*Github: Using github releases links.

9.Pick an ESP-IDF version to download or the find ESP-IDF in your
system option to search for existing ESP-IDF directory.

10.Choose the location for ESP-IDF Tools (also known as IDF_TOOLS_PATH) which
is $BHOME\ . espressif on MacOS/Linux and %USERPROFILE%\ .espressif on
Windows by default.

https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/docs/MULTI_PROJECTS.md

11.If your operating system is Linux or MacOS, choose the python executable to create
ESP-IDF virtual environment.

NOTE: Windows users don't need to select a python executable since it is part
of the setup. NOTE: Make sure that IDF_TOOLS_PATH doesn't have any
spaces to avoid any build issues. Also make sure that IDF_TOOLS_PATH is not
the same directory as IDF_PATH.

12.The user will see a page showing the setup progress status showing ESP-IDF download
progress, ESP-IDF Tools download and install progress as well as the creation of a python
virtual environment.

13.If everything is installed correctly, the user will see a message that all settings have been
configured. You can start using the extension. Otherwise check the Troubleshooting section
if you have any issues.

14.Press F1 and type ESP-IDF: Show Examples Projects to create a new project from
ESP-IDF examples. Select ESP-IDF and choose an example to create a new project from.

15.(OPTIONAL) Configure the . vscode/c_cpp_properties. json as explained
in C/C++ Configuration.

Note: For code navigation the Microsoft C/C++ Extension or Clangd extension can be
used for C/C++ language support. By default, projects created with ESP-IDF: Create
Project from Extension Template or ESP-IDF: Show Examples Projects include a

template for Microsoft C/C++ extension C_cpp_properties. json configuration
file and doesn't need to be configured. Run ESP-IDF: Run idf.py reconfigure task to
generate the compile_commands.json file so language support works.

16.Set the serial port of your device by pressing F1, typing ESP-IDF: Select Port to
Use: and choosing the serial port your device is connected.

17.Select an Espressif target (esp32, esp32s2, etc.) with the ESP-IDF: Set Espressif Device
Target command.

18.Use the ESP-IDF: Select OpenOCD Board Configuration to choose the openOCD
configuration files for the extension openOCD server.

19.Next configure your ESP-IDF project by pressing F1 and typing ESP-IDF: SDK
Configuration Editor command (CTRL E G keyboard shortcut) where the user can modify
the ESP-IDF project settings. After all changes are made, click save and close this window.

20.When you are ready, build your project by pressing F1 and typing ESP-IDF: Build your
Project.

21.Flash to your device by pressing F1 and typing ESP-IDF: Select Flash Method and
Flash to select either UART, DFU or JTAG depending on your serial connection.

NOTE: You can also use the ESP-IDF: Flash (UART) your Project or ESP-IDF:
Flash (with JTag) directly.

22.Start a monitor by pressing F1 and typing ESP-IDF: Monitor Device which will log the
device activity in a Visual Studio Code terminal.

https://marketplace.visualstudio.com/items?itemName=llvm-vs-code-extensions.vscode-clangd
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/docs/C_CPP_CONFIGURATION.md
vscode-webview://15366neeqhgigu9g61cpia6dijitaf5ps7f9k3a2lbi9j3dn7feh/index.html?id=b7cbe317-1b69-4648-813d-262e79576933&origin=e82c54dd-8d61-4a43-9e20-b0288cf89be8&swVersion=4&extensionId=&platform=electron&vscode-resource-base-authority=vscode-resource.vscode-cdn.net&parentOrigin=vscode-file%3A%2F%2Fvscode-app&disableServiceWorker=true#Troubleshooting

23.To make sure you can debug your device, select your board configuration by

pressing F1 and typing ESP-IDF: Select OpenOCD Board Configuration. You can test
the connection by pressing F1 and typing ESP-IDF: OpenOCD Manager. The output is
shown in the menu View -> Qutput and choose ESP - IDF from the dropdown list.

NOTE: The user can start or stop the OpenOCD from Visual Studio Code using
the ESP-IDF: OpenOCD Manager command or from the OpenOCD Server
(Running | Stopped) button in the visual studio code status bar.

24.1f you want to start a debug session, just press F5 (make sure you had at least build, flash
and openOCD is connecting correctly so the debugger works correctly).

Check the Troubleshooting section if you have any issues.

Tutorials

1.Install and setup the extension.

2.Create a project from ESP-IDF examples, Build, flash and monitor.

3.Debugging with steps to configure OpenOCD and debug adapter.

4 Heap tracing
5.Code coverage

6.Developing on Docker Container

7.Developing on WSL

Check all the tutorials here.

Table of content
*ESP-IDF Visual Studio Code Extension

eTutorials

eTable of content

*How to use
¢ Available commands
*About commands

eCommands for tasks.json and launch.json

e Available Tasks in tasks.json

*Troubleshooting

*Code of Conduct

e[.icense

Check all the documentation.

https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/docs/ONBOARDING.md
https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/README.md#license
https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/README.md#code-of-conduct
https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/README.md#troubleshooting
https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/README.md#available-tasks-in-tasksjson
https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/README.md#commands-for-tasksjson-and-launchjson
https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/README.md#about-commands
https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/README.md#available-commands
https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/README.md#how-to-use
https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/README.md#table-of-content
https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/README.md#tutorials
https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/README.md#esp-idf-visual-studio-code-extension
https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/docs/tutorial/toc.md
https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/docs/tutorial/wsl.md
https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/docs/tutorial/using-docker-container.md
https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/docs/tutorial/code_coverage.md
https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/docs/tutorial/heap_tracing.md
https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/docs/tutorial/debugging.md
https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/docs/tutorial/basic_use.md
https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/docs/tutorial/install.md
vscode-webview://15366neeqhgigu9g61cpia6dijitaf5ps7f9k3a2lbi9j3dn7feh/index.html?id=b7cbe317-1b69-4648-813d-262e79576933&origin=e82c54dd-8d61-4a43-9e20-b0288cf89be8&swVersion=4&extensionId=&platform=electron&vscode-resource-base-authority=vscode-resource.vscode-cdn.net&parentOrigin=vscode-file%3A%2F%2Fvscode-app&disableServiceWorker=true#Troubleshooting

Available commands

Click F1 to show Visual studio code actions, then type ESP-IDF to see all possible actions.

Command

Category Description

Description

Configuration Add OpenOCD rules Add OpenOCD permissions to

file (For Linux
users)

Add Docker
Container
Configuration

Add vscode
configuration folder

Configure ESP-IDF
extension

Select output and
notification mode

Select where to save
configuration
settings

Pick a workspace
folder

Basic

/etc/udev/rules.d to allow
OpenOCD execution.

Add the .devcontainer files to the
currently opened project directory,
necessary to use a ESP-IDF project
in a Docker container with Visual
Studio Code Remote -

Containers extension

Add .vscode files to the currently
opened project directory. These
include launch.json (for
debugging), settings.json and
C_cpp_properties.json for syntax
highlight.

Open a window with a setup
wizard to install ESP-IDF, IDF
Tools and python virtual
environment.

This extension shows many
notifications and output in the
Output window ESP-IDF. This
command allows the user to set if
to show notifications, show output,
both or none of them.

In Visual Studio Code settings can
be saved in 3 places: User Settings
(global settings), workspace

(.code-workspace file) or
workspace folder
(.vscode/settings.json). More
information in working with
multiple projects.

when using a Visual Studio Code
workspace with multiple
workspace folders, this command
allow you to select which
workspace folder to use for this
extension commands. More
information in working with
multiple projects.

Show Examples Projects

Keyboard

Keyboard Shortcuts Shortcuts

(Mac) (Windows/
Linux)

Launch UI to show

https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers

Category

SDK
Configuration
editor

Build your
project

Size analysis
of the binaries

Select port to
use

Command
Description

Description

examples from selected
framework and allow
the user to create a
project from them. This
command will show
frameworks already
configured in the
extension so if you
want to see ESP-
Rainmaker examples
you need to run

the Install ESP-
Rainmaker first (or set
the equivalent setting
idf.espRainmakerPath)
and then execute this
command to see the

Keyboard Shertcuts

(Mac)

examples.

This will set the target
for the current project
(IDF_TARGET).
Similar to idf.py set-
target. For example if
you want to use ESP32
or ESP32-C3 you need

Set Espressif device target

to execute this
command.

Launch a UI to configure your
ESP-IDF project settings. Thisis # I G
equivalent to idf.py menuconfig

Build your project using "CMake"
and "Ninja-build" as explained

in ESP-IDF Build System Using
Cmake Directly. You could modify
the behavior of the build task

with idf.cmakeCompilerArgs for ¥ I B
Cmake configure step

and idf.ninjaArgs for Ninja step.
For example, using [-j N] where N
is the number of jobs run in
parallel.

Launch UI with the ESP-IDF
project binaries size information.

IS

Select which serial port to use for % I P
ESP-IDF tasks like flashing or
monitor your device.

Keyboard
Shortcuts
(Windows/
Linux)

CtrlEG

CtrlEB

CtrlES

CtrlEP

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/build-system.html#using-cmake-directly
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/build-system.html#using-cmake-directly

Categor Command
gory Description
Flash your
project
Monitor
device

Open ESP-IDF
Terminal

Select
OpenOCD
Board
Configuration

Build, Flash
and start a
monitor on
your device

Project
creation

Show Examples
Projects

Create project from
Extension Template

Create New ESP-
IDF Component

Import ESP-IDF

Description

Write binary data to the ESP’s
flash chip from your current ESP-
IDF project. This command will
use either UART, DFU or JTAG
based on idf.flashType

This command will execute idf.py
monitor to start serial
communication with Espressif
device. Please take a look at

the IDF Monitor Documentation.

#®IF

#¥IM

Launch a terminal window
configured with extension ESP-
IDF settings. Similar to export.sh
script from ESP-IDF CLI.

Select the openOCD configuration
files that match your Espressif
device target. For example if you
are using DevKitC or ESP-
Wrover-Kit. This is necessary for
flashing with JTAG or debugging
your device.

®IT

Build the project, write binaries
program to device and start a
monitor terminal with a single
command. Similar to “idf.py build
flash monitor”

#ID

Launch UI to show examples from
selected framework and allow the
user to create a project from them.
This command will show
frameworks already configured in
the extension so if you want to see
ESP-Rainmaker examples you
need to run the Install ESP-
Rainmaker first (or set the
equivalent setting
idf.espRainmakerPath) and then
execute this command to see the
examples.

Create ESP-IDF using one of the

. . ®#IC
extension template projects.

Create a new component in the
current directory based on ESP-
IDF component template

Import an existing ESP-IDF

Keyboard Shertcuts

(Mac)

Keyboard
Shortcuts
(Windows/
Linux)

CtrlEF

CtrlEM

CtrlET

CtrlED

CtrlEC

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/tools/idf-monitor.html?highlight=monitor

Category

Flashing

Code coverage

Command Keyboard Shortcuts

.. Description
Description P

project and add .vscode

and .devcontainer files to a new
location and also able to rename
the project.

Launch UI with a ESP-IDF project
creation wizard using examples

New Project templates from ESP-IDF and #IN
additional frameworks configured
in the extension.

Project

Select which flash method to use
Select Flash Method for Flash your project command.
It can be DFU, JTAG or UART.

Write binary data to the ESP’s
flash chip from your current ESP-
Flash your project IDF project. This command will ¥ I F
use either UART, DFU or JTAG
based on idf.flashType

Write binary data to the ESP’s
Flash (DFU) your flash chip from your current ESP-
project IDF project using DFU. Only for

ESP32-S2 and ESP32-S3.

Write binary data to the ESP’s

Fi?‘l;c(tUART) YOUT flash chip from your current ESP-

proJ IDF project using esptool.py
Write binary data to the ESP’s

Flash (with JTag) flash chip from your current ESP-

IDF project using OpenOCD
JTAG

Execute flashing the project
Encrypt and Flash program to device while adding --
your Project encrypt for partitions to be
encrypted.

Execute esptool.py erase_flash
command to erase flash chip (set to¥ I R
OxFF bytes)

Parse your project GCOV Code
coverage files to add color lines
representing code coverage on
currently opened source code file

Erase Flash Memory
from Device

Add Editor coverage

Configure Project Set required values in your project
SDKConfig for SDKConfig to enable Code
Coverage Coverage

Get HTML Parse your project GCOV Code

(Mac)

Keyboard
Shortcuts
(Windows/
Linux)

CtrlEN

CtrlEF

CtrlER

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/app_trace.html#gcov-source-code-coverage)
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/app_trace.html#gcov-source-code-coverage)
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/app_trace.html#gcov-source-code-coverage)

Category

Additional
frameworks

Command
Description

Keyboard

Keyboard Shortcuts Shortcuts

(Mac) (Windows/
Linux)

Description

Coverage Report for coverage files to generate a HTML

project

Remove Editor
coverage

Install ESP-ADF

coverage report.

Remove editor colored lines
from Add Editor
coverage command

Clone ESP-ADF inside the
selected directory and

set idf.espAdfPath (idf.espAdfPa
thWin in Windows) configuration
setting.

Add Arduino-ESP32 as a ESP-IDF

Add Arduino ESP32 component in your current

as ESP-IDF
Component

Install ESP-IDF
Python Packages
(DEPRECATION
NOTICE)

Install ESP-MDF

Install ESP-Matter

Set ESP-MATTER
Device Path

directory ($
{CURRENT_DIRECTORY}/co
mponents/arduino).

Install extension python packages.
Deprecated will be removed soon.

Clone ESP-MDF inside the
selected directory and

set idf.espMdfPath (idf.espMdfP
athWin in Windows)
configuration setting.

Clone ESP-Matter and

set idf.espMatterPath. The ESP-
IDF: Set ESP-MATTER Device
Path
(ESP_MATTER_DEVICE_PAT
H) is used to define the device path
for ESP-Matter. ESP-Matter is not
supported in Windows. Make sure

to install Matter system
prerequisites first.

The ESP-IDF: Set ESP-
MATTER Device Path
(ESP_MATTER_DEVICE_PAT

(ESP_MATTER_DE H) is used to define the device path

VICE_PATH)

Install ESP-
Rainmaker

for ESP-Matter. ESP-Matter is not
supported in Windows.

Clone ESP-Rainmaker and

set idf.espRainmakerPath (idf.es
pRainmakerPathWin in
Windows) configuration setting.

https://github.com/espressif/connectedhomeip/blob/v1.1-branch/docs/guides/BUILDING.md#prerequisites
https://github.com/espressif/connectedhomeip/blob/v1.1-branch/docs/guides/BUILDING.md#prerequisites
https://github.com/espressif/arduino-esp32
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/app_trace.html#gcov-source-code-coverage)

Category

eFuse

QEMU

Monitoring

Editors

Command
Description

Install ESP-
HomeKit-SDK

Get eFuse Summary

Clear eFuse
Summary

Launch QEMU
Server

Launch QEMU
Debug Session

Monitor QEMU
Device

Monitor device

Launch IDF Monitor
for CoreDump /
GDB-Stub Mode

Monitor QEMU
Device

Description

Clone ESP-HomeKit-SDK inside
the selected directory and

set idf.espHomeKitSdkPath (idf.
espHomeKitSdkPathWin in
Windows) configuration setting.

Get list of eFuse and values from
currently serial port chip.

Clear the eFuse Summary tree
from ESP Explorer
EFUSEEXPLORER

As described in QEMU
documentation this command will
execute ESP32 QEMU from the
project Dockerfile with the current
project binaries.

As described in QEMU
documentation this command will
start a debug session to ESP32
QEMU from the project Dockerfile
with the current project binaries.

As described in QEMU
documentation this command will
start a terminal to monitor the
ESP32 QEMU from the project
Dockerfile with the current project
binaries.

This command will execute idf.py
monitor to start serial

communication with Espressif ¥IM
device. Please take a look at

the IDF Monitor Documentation.

Launch ESP-IDF Monitor with
websocket capabilities. If the user
has configured the panic handler to
gdbstub or core dump, the monitor
will launch a post mortem debug
session of the chip.

As described in QEMU
documentation this command will
start a terminal to monitor the
ESP32 QEMU from the project
Dockerfile with the current project
binaries.

NVS Partition Editor Launch U to create a CSV file

Keyboard Shertcuts

(Mac)

Keyboard
Shortcuts
(Windows/
Linux)

CtrlEM

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/tools/idf-monitor.html?highlight=monitor

Category

Unit Testing

Scripts and
Tools

Command
Description

Partition Table
Editor

SDK Configuration
editor

Unit Test: Build and
flash unit test app for
testing

Unit Test: Install
ESP-IDF PyTest
requirements

Run idf.py
reconfigure task

Erase Flash Memory
from Device

Dispose Current
SDK Configuration
Editor Server
Process

Doctor Command

Troubleshoot Form

Run ESP-IDF-
SBOM vulnerability
check

Description

for ESP IDF Non Volatile Storage

Launch UI to manage custom
partition table as described
in ESP_IDF Partition Table

Launch a UI to configure your
ESP-IDF project settings. Thisis ¥ I G
equivalent to idf.py menuconfig

Copy the unit test app in the
current project, build the current
project and flash the unit test
application to the connected
device. More information in Unit
testing documentation

Install the ESP-IDF Pytest
requirements packages to be able
to execute ESP-IDF Unit tests.
More information in

This command will execute idf.py
reconfigure (CMake configure
task). Useful when you need to
generate compile_commands.json
for the C/C++ language support.

Execute esptool.py erase_flash
command to erase flash chip (set to% I R
OxFF bytes)

If you already executed the SDK
Configuration editor, a cache
process will remain in the
background for faster re opening.
This command will dispose of
such cache process.

Run a diagnostic of the extension
setup settings and extension logs to
provide a troubleshooting report.

Launch UI for user to send a
troubleshoot report with steps to
reproduce, run a diagnostic of the
extension setup settings and
extension logs to send to telemetry
backend.

Creates Software bill of materials
(SBOM) files in the Software

Package Data Exchange (SPDX)
format for applications generated

Keyboard Shertcuts

(Mac)

Keyboard
Shortcuts
(Windows/
Linux)

CtrlEG

CtrlER

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/partition-tables.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/storage/nvs_flash.html

Keyboard

Categor Command Descriotion Keyboard Shortcuts Shortcuts
gory Description P (Mac) (Windows/
Linux)
by the Espressif [oT Development
Framework (ESP-IDF).
Save Default Generate sdkconfig.defaults files
SDKCONFIG file using the project current sdkconfig
(save-defconfig) file.
Show Ninja Build Execute the Chromium ninja-
Summary build-summary.py
Select some text from your source
Search in ' code file anq sear.ch in ESP—I'DF _RIQ CtrlEQ
documentation... documentation with results right in

the vscode ESP-IDF Explorer tab.

Type some text to find a matching
Search Error Hint error from ESP-IDF hints
dictionary.

Clear results from
Clear ESP-IDFESP Explorer
Search Results Documentation

Search Results

Clear Saved Clear existing esp-
ESP-IDF idf setups saved by
Setups the extension.

About commands

1.The Add Arduino-ESP32 as ESP-IDF Component command will add Arduino-
ESP32 as a ESP-IDF component in your current directory
(${CURRENT_DIRECTORY}/components/arduino).

NOTE: Not all versions of ESP-IDF are supported. Make sure to
check Arduino-ESP32 to see if your ESP-IDF version is compatible.

2.You can also use the ESP-IDF: Create Project from Extension Template command
with arduino-as-component template to create a new project directory that includes
Arduino-ESP32 as an ESP-IDF component.

3.The Install ESP-ADF will clone ESP-ADF inside the selected directory and
set 1df.espAdfPath (idf.espAdfPathwin in Windows) configuration setting.

4.The Install ESP-Matter will clone ESP-Matter inside the selected directory and

set idf.espMatterPath configuration setting. The ESP-IDF: Set ESP-MATTER
Device Path (ESP_MATTER_DEVICE_PATH) is used to define the device path for ESP-
Matter. ESP-Matter is not supported in Windows. Make sure to install Matter system

prerequisites first.

https://github.com/espressif/connectedhomeip/blob/v1.1-branch/docs/guides/BUILDING.md#prerequisites
https://github.com/espressif/connectedhomeip/blob/v1.1-branch/docs/guides/BUILDING.md#prerequisites
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32

5.The Install ESP-MDF will clone ESP-MDF inside the selected directory and
set idf.espMdfPath (idf.espMdfPathWin in Windows) configuration setting.

6.The Install ESP-HomeKit-SDK will clone ESP-HomeKit-SDK inside the selected
directory and set 1df .espHomeKitSdkPath (idf.espHomeKitSdkPathWin in
Windows) configuration setting.

7.The Show Examples Projects command allows you create a new project using one of the
examples in ESP-IDF, ESP-ADF, ESP-Matter, ESP-HomeKit-SDK or ESP-MDF directory if
related configuration settings are correctly defined.

Commands for tasks.json and launch.json

We have implemented some utilities commands that can be used in tasks.json and launch.json that
can be used like:

"miDebuggerPath": "${command:espIdf.getToolchainGdb}"
*espIdf.getExtensionPath: Get the installed location absolute path.

*espIdf.getOpenOcdScriptValue: Return the value of OPENOCD_SCRIPTS
from idf.customExtraVars or from system OPENOCD_SCRIPTS environment
variable.

*espIdf.getOpen0OcdConfig: Return the openOCD configuration files as string.
Example -f interface/ftdi/esp32_devkitj_vil.cfg -f board/esp32-
wrover.cfg.

*espIdf.getProjectName: Return the project name from current workspace
folder build/project_description.json.

*espIdf.getToolchainGcc: Return the absolute path of the toolchain gec for the ESP-
IDF target given by 1df .adapterTargetName configuration setting
and idf.customExtraPaths.

*espIdf.getToolchainGdb: Return the absolute path of the toolchain gdb for the
ESP-IDF target given by 1df .adapterTargetName configuration setting
and 1idf.customExtraPaths.

See an example in the debugging documentation.

Available Tasks in tasks.json

A template Tasks.json is included when creating a project using ESP-IDF: Create Project from
Extension Template. These tasks can be executed by running F1, writing Tasks: Run
task and selecting one of the following:

1.Build - Build Project
2.Set Target to esp32
3.Set Target to esp32s2

https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/docs/DEBUGGING.md

4.Clean - Clean the project

5.F lash - Flash the device

6.Monitor - Start a monitor terminal

7.0pen0OCD - Start the openOCD server

8.BuildF lash - Execute a build followed by a flash command.

Note that for OpenOCD tasks you need to define OPENOCD_SCRIPTS in your system
environment variables with openocd scripts folder path.

Troubleshooting

If something is not working please check for any error on one of these:

NOTE: Use idf.openOcdDebugLevel configuration setting to 3 or more to show
debug logging in OpenOCD server output.

NOTE: Use logLevel in your /.vscode/launch.json to 3 or more to show more debug
adapter output.

1.In Visual Studio Code select menu View -> Output -> ESP-IDF. This output information
is useful to know what is happening in the extension.

2.In Visual Studio Code select menu View then click Command Palette... and type ESP -
IDF: Doctor Command to generate a report of your environment configuration and it
will be copied in your clipboard to paste anywhere.

3.Check log file which can be obtained from:

*Windows: %USERPROFILE%\.vscode\extensions\espressif.esp-1idf-
extension-VERSION\esp_idf_vsc_ext. log

*Linux & MacOSX: $HOME/ .vscode/extensions/espressif.esp-idf-
extension-VERSION/esp_idf_vsc_ext. log

4.In Visual Studio Code, select menu Help -> Toggle Developer Tools and copy
any error in the Console tab related to this extension.

5.Make sure that your extension is properly configured as described in JSON Manual
Configuration. Visual Studio Code allows the user to configure settings at different
levels: Global (User Settings), Workspace and Workspace Folder so make sure your
project has the right settings. The ESP-IDF: Doctor command result might give the
values from user settings instead of the workspace folder settings.

6.Review the OpenOCD troubleshooting FAQ related to the OpenOCD output, for
application tracing, debug or any OpenOCD related issues.

If there is any Python package error, please try to reinstall the required python packages with
the ESP-IDF: Install ESP-IDF Python Packages command. Please consider that this extension

https://github.com/espressif/openocd-esp32/wiki/Troubleshooting-FAQ
https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/docs/SETUP.md#JSON-Manual-Configuration
https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/docs/SETUP.md#JSON-Manual-Configuration

install ESP-IDF, this extension's and ESP-IDF Debug Adapter python packages when running
the ESP-IDF: Configure ESP-IDF Extension setup wizard.

NOTE: When downloading ESP-IDF using git cloning in Windows if you receive
errors like "unable to create symlink", enabling Deve loper Mode while cloning
ESP-IDF could help resolve the issue.

If the user can't resolve the error, please search in the github repository issues for existing errors or

open a new issue here.

Code of Conduct

This project and everyone participating in it is governed by the Code of Conduct. By participating,
you are expected to uphold this code. Please report unacceptable behavior
to vscode@espressif.com.

License

This extension is licensed under the Apache License 2.0. Please see the LICENSE file for additional
copyright notices and terms.

https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/LICENSE
https://github.com/espressif/vscode-esp-idf-extension/blob/HEAD/docs/CODE_OF_CONDUCT.md
https://github.com/espressif/vscode-esp-idf-extension/issues/new/choose
http://github.com/espressif/vscode-esp-idf-extension/issues

	How to use
	Tutorials
	Table of content
	Available commands
	About commands
	Commands for tasks.json and launch.json
	Available Tasks in tasks.json
	Troubleshooting
	Code of Conduct
	License

